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Real space renormalisation group for directed systems in 
arbitrary dimensions 

J Kamphorst Leal da Silvat and M Droz 
Dtpartement de Physique Thtorique, Universitt de Gentve, CH-1211 Genbve 4, 
Switzerland 

Received 5 August 1986 

Abstract. A real space renormalisation group approach to intrinsically anisotropic systems 
(i.e. systems having two different correlation lengths) is defined. The problems of directed 
self-avoiding walks (DSAW) and directed percolation in d dimensions are discussed in 
detail. For DSAW, one obtains the exact critical fugacity in all dimensions. For directed 
percolation, the percolation threshold pc  obtained is very good in two dimensions, 
asymptotically exact for large dimensions and quite good in between. The parallel and 
perpendicular correlation length exponents U,, and Y, are computed for the two problems. 

1. Introduction 

Real space renormalisation group ( RSRG) techniques have been extensively used in 
the past years to study critical phenomena (Burkhardt and van Leeuwen 1982). These 
approaches have been reasonably successful for both thermal and geometrical phase 
transitions providing that one length scale, the correlation length, dominates near 
criticality. 

However, there is a class of problems for which no good RSRG exist, namely the 
problems characterised by two length scales. One encounters such a situation near a 
Lifshitz point (Hornreich er a1 1975), in critical dynamics and in the so-called directed 
geometrical phase transitions. The problems of the directed self-avoiding walk ( DSAW) 

and directed percolation belong to this class. These problems are intrinsically 
anisotropic. Two different correlation lengths, the parallel and transverse ones, have 
to be introduced associated with the two critical exponents vll and v,. The ratio 
6 = vll/ v, is called the anisotropy exponent. 

Usual RSRG approaches use an isotropic rescaling factor b. Even if a reasonable 
phase diagram can be obtained, one does not know how to extract unambiguously the 
correlation length exponents (Redner and Yang 1982, de Oliveira 1983). To do that, 
one must use two different rescaling factors bl, and b, in the RSRG transformation in 
such a way that b,, = b? (Phani and Dhar 1982). This implies that the shape of the 
cell must change at each renormalisation step. Note moreover that for small sizes only 
a restricted number of particular values for 0 is realisable, limiting the feasibility of 
the method. The problem of asymmetric rescaling can possibly be avoided if one of 
the two parameters b,l and 6, becomes infinite. This is realised in the so-called 
phenomenological renormalisation approach (Nadal et a1 1982, Kinzel and 
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Yeomans 1981) in which transfer matrix techniques are combined with finite-size 
scaling. This approach is mostly restricted in practice to the two-dimensional case. 
Another way to avoid the problem of changing cell shapes was proposed by Herrmann 
et al (1983). By patching square cells together to form an infinite sequence, they were 
able to obtain the values for the exponents v of the two-dimensional directed percolation 
in the limit of an infinite rescaling factor. 

A different approach, using an isotropic RSRG transformation, was introduced by 
Zhang and Yang (1984). The anisotropy is introduced into the problem by defining 
two effective lengths Lil and L ,  for both the original and renormalised lattice. These 
effective lengths are taken as the basic units for the measurement of the longitudinal 
and transverse correlation lengths. The anisotropy exponent 8 is related to the 
anisotropic rescaling of Lll and L , .  It has been shown (Zhang and Yang 1984) that 
this method, implemented by an exact RSRG transformation, gave the exact results for 
the two-dimensional DSAW on a square lattice in the limit of an infinite rescaling factor. 

However, for two-dimensional directed percolation, Zhang and Yang (1984) were 
not able to find sensible results. The difficulty is that one cannot devise an exact RSRG 

for this problem. If the approximate transformation used is too crude, it is impossible 
to extract meaningful exponents. 

Recently, a new isotropic RSRG transformation was proposed by Kamphorst Leal 
da Silva and Droz (1985) for directed percolation. The merits of this transformation 
is to give almost the exact value for the percolation threshold in two dimensions. 
Moreover, this RSRG transformation can be defined in arbitrary dimension. For all 
dimensions, the prediction for the percolation threshold is within a few per cent of 
the best estimate. Finally, this transformation is obtained analytically for arbitrary 
rescaling factor b. The best results are obtained by considering the analytical 
continuation b + 1. The main problem with this renormalisation transformation is how 
to compute the anisotropy exponent 8. It is thus legitimate to implement this 
renormalisation transformation by the two effective lengths (TEL) method of Zhang 
and Yang. 

The paper is organised as follows. In 0 2 ,  we apply our RSRG transformation to 
the simpler problem of the directed self-avoiding walk and extract the correlation 
length exponents using the TEL method. Only the two-dimensional cases are discussed. 
The general d-dimensional case is considered in appendix 1. Section 3 is devoted to 
directed percolation. The two-dimensional case is treated in detail. Both the so-called 
isotropic (i.e. p x  = pv = p )  directed percolation and the strongly biased case ( p x  = p ,  p y  = 
1) are considered. The generalisation to d dimensions is treated in appendix 2.  Finally 
the results are critically discussed in 0 4. A test of self-consistency is discussed, allowing 
us to find a better anisotropy exponent. 

2. Directed self-avoiding walk 

The problem of the directed self-avoiding walk is the simplest directed geometrical 
problem one can think of. Let us consider as an illustration the two-dimensional case 
on a square lattice (see figure 1). Starting from the origin, one can move to the right 
or downward. Let p x  and pv be the fugacities associated to a step to the right and 
downward respectively. The simplest case is the symmetric one for which p x  = p y .  For 
p x  larger than a threshold value, p: ,  the walk will, on the average, extend to an arbitrary 
large distance. The problem is anisotropic in the sense that two particular directions 
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lattice. R,, and R, are 

can be defined, the parallel and perpendicular ones. When p x  approaches p : ,  the mean 
longitudinal displacement (RI,) and the root mean square perpendicular displacement 

diverge as a power law, namely 

This problem and its d-dimensional generalisation are easily solvable by transfer matrix 
techniques (Redner and Majid 1983). In two dimensions, one finds p :  =;; V I / =  1, 
corresponding to a ballistic-like propagation in the parallel direction and v L  = f, 
corresponding to a random walk propagation in the perpendicular direction. It is 
straightforward to write an exact RSRG transformation for this problem (Zhang and 
Yang 1984). Having in mind the application of the method to directed percolation 
and following our previous work (Kamphorst Lea1 da Silva and Droz 1985), we 
introduce a Migdal-like RSRG transformation for the DSAW. Let us first consider the 
two-dimensional case. The renormalisation transformation is defined as follows. 

Consider a cell of size b x b. p x  and p,, are the fugacities associated to a step in 
the x and y direction respectively (see figure 2(a)). The first step of the transformation 
consists in suppressing horizontal links in the cell by introducing a renormalised 
fugacity FX which guarantees that the fugacity that a walk starting at the origin and 

0 A Px 

p y p l T x  

Y Y Y 
(a )  ib)  ( C )  

Figure 2. Successive steps of the renormalisation group transformation (here b = 4). 
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reaching a point on the line AB is conserved. Thus 

ix = p x  + p x p y  + p x p ;  + * * + P x P y ” -  ’ = P x (  1 - P , ” ) /  ( 1 - P y  1. (2.2) 

The second step is to replace the fugacity p y  associated to a step in the y direction, 
by the fugacity Cy associated to b steps in the y direction. This ‘decimation’ procedure 
leads to 

b 
i Y  = P Y .  (2.3) 

The third step is to repeat the first step for y ,  leading by analogy to 

P :  - i 9 / ( 1  - i x ) .  (2.4) 

The last step is to ‘decimate’ along the x direction. Thus 
I - - b  

P x  - P x .  

This transformation is defined for all values of b. The best results are obtained by 
considering the analytic continuation b = 1 + Sb + 1 .  In this limit, one finds 

For the symmetric case p x  = p y ,  the critical fixed point is p *  = 4, i.e. the exact value. 

we find 
One can then linearise the recursion relation (2.6) near the critical fixed point and 

= 1 + Sb2 In 2 = b’/”.  

Thus 

v = 1/2 In 2 = 0.721. (2.8) 

Equation (2.7) defines formally a critical exponent v, but is is not clear to which 
diverging length this exponent is associated. 

Let us now introduce the two effective lengths method (TEL). For the original 
lattice, one decomposes a directed one-step walk into two components, along the 
parallel and the perpendicular directions. The effective lengths are simply the lengths 
of these two components. Assuming that the lattice constant of the original lattice is 
unity, and making the first step in the x direction, one has Ll l (x ,  b = 1 )  = 2 - 1 ’ 2 =  
L,(x,  b = 1 ) .  

For the renormalised lattice, the situation is more complicated. Let us consider 
the first step of the renormalisation transformation. The two effective lengths L, , (X,  b) 
and Ll (x ,  b )  are defined as follows. Consider all the paths T i  contributing to the first 
step of the renormalisation group transformation. Let Ri be the endpoint of the path 
T i  and mi the vector going from the origin to the point Ri. We can project mi onto 
the parallel and perpendicular directions. Then L;(x ,  b) and L:(x, b )  are defined 
as the average, computed at the fixed point, over all the paths contributing to the 
two projections defined above. Moreover, in the last step of the renormalisation 
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transformation, one performs a decimation on j x ,  leading to an extra multiplicative 
factor of b to the effective length computed in the first step. Thus we have 

But 

and 

b = I + S b  

= -ab(- 
1 - P y  1 - P y  

np! 
n =o 

Thus (2.9) becomes, using the result (2.2) for iX: 

Li ( p x ;  1 + S b )  = Jz [ 1 - Sb ( + p y  In 
2 1 - P y  ( I - P , )  

and finally after the ‘decimation’ 

For the perpendicular direction, one finds, along the same lines, 

Using (2 .2) ,  (2.10) and (2.11), one obtains 

and finally, after the ‘decimation’, 

L L ( p x ;  
1 - P y  ( l - P y )  

(2.10) 

(2 .11)  

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2 .16)  

Note that, instead of making the first step in the x direction, one can make the 
first step in the y direction and compute along the same line L l l ( y ,  b )  and L,(y, b ) .  
One can check that the results are similar to the one of equations (2.13) and (2.16) 
providing that one interchanges px and p y  in the formulae. 

Let us now return to the TEL strategy. The two effective lengths Lll(x, b )  and L L ( x ,  b )  
are, in the critical domain, the distances made by one step of the directed walk relative 
to the preferred direction of the system. This means that Lll(x, b )  and L L ( x ,  b )  form 
the basic units of the renormalised lattice. More explicitly, we can relate the two 
effective lengths to the anisotropic rescaling factors b,, and b- as follows: 

(2.17) 
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Thus the renormalised lattice is a deformed one with a parallelepipedic shape and 
having the same origin as the original lattice (see figure 3). Since the system remains 
unchanged, except for a rescaling, before and after the transformation, one can write 

and 

Moreover 

Thus 

and 

From (2.6), one finds, for p x  = p y  = p *  = i, 

dp: I =l+Sb21n2.  
dPx p:  

Thus using (2.13) and (2.16), one obtains 

1 -In 2 
In 2 VI1 = 1 U,=-- - 0.443. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

Figure 3. The renormalised lattice (bold lines) is deformed relative to the original lattice. 
bll and b,  are the parallel and transverse rescaling factors, respectively. 
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These results have to be compared with the exact values vl l  = 1 and v, = 0.5. If the 
prediction for V I I  is exact, the value obtained for v, is within about 10%. 

This discrepancy could be due somewhat to the arbitrariness in the definition of 
LII and L, .  Indeed, those effective lengths were defined by averaging the effective 
lengths of each path. It may happen that the effective length associated to some path 
is negative, leading to cancellations in the average (see equation (2.14) for example). 
A different way to proceed is to define the effective lengths as the square root of the 
average of the square effective lengths associated to the paths (Zhang and Yang 1984). 
Let us study this procedure for the DSAW. Following the previous notation, one has 

b - l  b - l  

n = O  n =o 

Using (2.2), (2.10), (2.11) and the result 

(2.25) 

(2.26) 

and taking into account the multiplicative factor b2 due to the 'decimation', one finds 

At the fixed point one finds 

Li( p : ;  1 + a b )  
= 1 + 6b(10 In 2-4). 

L i W ;  1) 

(2.27) 

(2.28) 

But now 

Lf,,( p x ;  1 + 6b) dp: '"1.1 

=- 1 (2.29) 

leading with (2.23) to vl, = 1.057. Along the same line, one can compute L , ( p x ,  b),  
namely 

Li , , (px ;  1) dPx p :  

1 

P x  
( L: ( p x  ; b )2  = T- ( t p ,  + t p x p $  + 2pxp: + . . . + 4( b - 2)2pxp.:-' ) . (2.30) 

In the limit b- t  l+Sb, using (2.2), (2.10), (2.11) and (2.26), and taking into account 
the multiplicative factor b2 arising from the decimation, one finds 

At the fixed point 

L:(p,*;  1 + Sb) 
= 1 +26b In 2 

L:(P,*; 1) 

(2.31) 

(2.32) 

leading with (2.23) and (2.29) to U, =i. 
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Thus, this second prescription, which is intuitively more satisfactory than the first 
one for the perpendicular direction, leads indeed to the exact transverse exponent v,. 
On the other hand, the parallel exponent vll is no longer exact but about 6% from its 
exact value. 

Nevertheless, we see that the Migdal-like RSRG transformation used, implemented 
by the TEL procedure, allows for a very reasonable description of the DSAW problem. 

The above derivation was restricted to the two-dimensional case. However, this 
method can be extended to arbitrary dimensions. This is a natural extension of the 
two-dimensional case but still a tedious exercise. The main steps of it and the results 
are given in appendix 1. 

3. Directed bond percolation 

The problem of isotropic directed bond percolation can be defined as follows. Let us 
consider a d-dimensional hypercubic lattice Ad. To each edge of the lattice a bond is 
either present with probability p or absent with probability (1 - p ) .  Each bond is 
oriented, i.e. carries an arrow pointing in the direction of the Cartesian axis parallel 
to the edge. One aim of the theory is to describe the properties of the connected pieces 
of the network. On the average, one can link the origin of the lattice 0 to the points 
within the domain sketched in figure 4. This domain is characterised by two correlation 
lengths: the one along the main diagonal of the lattice ell and the one perpendicular 
to the main diagonal .CL. p c  is the directed bond percolation threshold. vl l  and v, are 
the longitudinal and transverse correlation length exponents. 

t 
II 

Figure4. Cluster shape below the percolation threshold. 
perpendicular correlation lengths, respectively. 

and 6, are the parallel and 

Let us restrict ourselves for the time being to the two-dimensional case. The best 
results for the isotropic case have been obtained by transfer matrix techniques (Kinzel 
and Yeomans 1981). Another situation of interest is the anisotropic case for which 
p x  = 1 and p y  = p ,  because this case is exactly solvable (Domany and Kinzel 1981). We 
shall consider these two cases below. 

Let us now recall briefly how the RSRG transformation is defined for this problem 
(Kamphorst Leal da Silva and Droz 1985). We consider a symmetric b x b cell. Let 
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px  and p,,, the probabilities for the presence of a directed bond in the x and y directions 
respectively (see figure 2). The first step of the transformation is to move the bonds 
along the x direction as shown in figure 2 ( b ) .  The new probability ix is obtained by 
taking into account the contribution of all the oriented paths starting from the origin 
and ending on the line AB. The second step is to decimate along the y direction, 
leading to a new probability t,,. The third step is to repeat the first step for the i,,. 
Finally, the last step is to decimate along the x direction (see figure 2 ( c ) ) .  After the 
analytic continuation 6 + 1 + ab, one finds the following recursion relations: 

(3.1) 

where qJ = 1 - p J ,  j = x, y. The non-trivial fixed points are the isotropic one px  = pr = p*  = 
0.6456 and p,* = 0.5, p :  = 1.0 (Kamphorst Leal da Silva and Droz 1985). Defining the 
correlation length exponent v through the relation: 

(3.2) 

one finds v = 1.286 for the isotropic fixed point and v = 1.629 for the anisotropic one. 
But here again, it is not clear how this exponent v is related to the exponents of interest 
vll and vl. 

We have to implement the transformation by introducing two effective lengths into 
the problem. The two correlation lengths can be defined in terms of the moment of 
the pair connectedness function r(O,j), defined as the probability that a pair of sites 
at the origin and at an arbitrary point j of the lattice are connected by a path of bonds 
that can be traversed in the direction of the arrows. Let roJ,ll and roJ,l be respectively 
the projections of the vector @ in the parallel and perpendicular directions. Then, 
one can define for a = 1 1  or 1: 

- 1  

5 ~ ( P ) = ~ r ( o , ~ ) r ~ J , ~ ( ~ r ( o , j ) )  J . (3.3) 

But 

5 m  - ( P  -PJ*"". (3.4) 
Thus, by computing ( 5  for the original lattice and the rescaled one ( b  being the 
rescaling factor), one finds 

Moreover, in  complete analogy with the DSAW case, one has in the critical regime 

where the two effective lengths correspond to the basic units of length of the original 
and renormalised cells. The problem is to compute those lengths following the steps 
of the renormalisation transformation. Referring to figure 2, we have the following 
situation. The original lattice A I  with probabilities p x  and p,, in the directions x and 
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y has equal basic lengths in both directions, chosen arbitrarily to be unity. After the 
two first renormalisation group steps, the probabilities are ix and iy and the basic 
lengths of the lattice A2 are La(&)  and L,(F,) in the directions x’ and F respectively. 
Thus, according to (3.3), we can write 

where lei is the projection of the vector @ in the direction a,  and 

where fmi is the projection of the vector @ in the direction (Y measured in units of 
La(Z)  and Le(?). Finally 

2 um 

P’ 

We can compute the different quantities of interest by inspection. One finds 

b-1 

Bi, ,=1+(Px+eV) c P;* 
n=O 

(3.9) 

(3.10) 

Using (2.10), (2.1 1 )  and (2.26) and taking the analytic continuation b + 1 +ab, one finds 

It follows that 

and 

(3 .13 )  

(3.14) 
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In the limit b-, l+Sb,  one finds using (2.10), (2.11), (2.26) and (3.13), 

(3.15) 

where z = 1 + p x  + p y .  Thus 

Finally, using (3.8), one obtains 

(3.16) 

(3.17) 

We can now compute the quantities for the transverse direction following the same 
lines. One finds 

b-1 b - l  

A l L = t ( P x + P y )  c ( n ' + l ) P S : + ( P , - P x )  c VS: 

BIL = Blll 

AzL = byL: ( Fy 1 + 

n = O  n = O  

B 2 L  = B21l 
(3.18) 

2Px 2Px lnpx -+- 
9 X  4 X  

P x  lnpx I l (  (2 ) - 2 P x - P y ) (  
4 X  

Thus 
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Using (3.1) and (3.5), we can then extract the numerical values of the exponents. The 
results are the following. At the isotropic critical fixed point vI1 = 1.76 and v, = 0.66 
to be compared with the best estimate vll= 1.73 and v, = 1.1.  For the anisotropic 
critical fixed point one finds vlI = 2.26 and v, = 0.88 to be compared with the exact 
values vll = 2.0 and v, = 1.0. The values obtained for vII are rather good. The values 
for v, are less precise but qualitatively reasonable. 

One of the merits of this method is the fact that it can be applied to the general 
d-dimensional case. The main steps of this calculation and the results are given in 
appendix 2. 

4. Conclusions 

The method used in the preceding sections mixed two ingredients. Firstly, the critical 
fixed points are obtained using an isotropic renormalisation group transformation. At 
each iteration of the transformation, the number of degrees of freedom of the system 
is reduced by a factor bd. Secondly, two lengths defining two different rescaling 611 
and b, for the basic lengths of the lattices are introduced. Are those two ingredients 
compatible? The minimum criterion of compatability to be fulfilled is that the reduction 
of the number of degrees of freedom should be the same in the two procedures. Thus 

(4.1) 

This condition can be considered as a self-consistent condition allowing us to test the 
quality of the approximation used. 

Let us look at the situation for the two-dimensional DSAW. In the first procedure, 
in which one computes the two effective lengths directly, one has (see equations (2.13) 
and (2.16)) 

b d  = 6 b ( d - 1 )  
I l l  ' 

611 = 1 + Sb2 In 2 

6, = 1 + Sb(2 - 2 In 2) 
(4.2) 

and thus 6116, = 6'. 
For the second procedure, in which the effective lengths are defined as the square 

root of the average of the square effective lengths associated to the different paths, 
one finds (see (2.28) and (2.32)): 

611= l + S 6 ( 5 l n 2 - 2 )  

6, = 1 + 66 In 2. (4.3) 

Thus bllb,= 1+66(2.159) and not 1+66(2.0) as it should be according to (4.1). 
However, 2.159 is not too far from 2.0 and the self-consistent criterion is almost fulfilled. 

However, by enforcing the self-consistent criterion (4.1), one has a way to compute 
b,  knowing bll or vice versa. Let us apply this strategy to the above situation. Assuming 
6, given by (4.3), one finds 611 = 1 + Sb(2 - In 2). The corresponding exponents are 

= 0.943 v, = 0.5. (4.4) 
Thus for the DSAW problem, all the strategies considered give the exact critical fixed 
point, one correlation length exponent exactly and the correlation length exponent 
within a few per cent. 
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For the two-dimensional directed percolation, the situation is the following. At 
the isotropic fixed point, one has from (3.17) and (3.19): 

bll= 1 + Sb( 1.369) 

b, = 1 + Sb(0.513). 
(4.5) 

Thus bllb, = 1 + 1.88Sb while b2 = 1 +2Sb. At the anisotropic fixed point (p ,*  = 1; 
p $  = 0.5) 

b, ,=l+S6(1.39) 

b, = 1 + Sb(0.54). 
(4.6) 

Thus bllb, = 1 + 1.93Sb while bZ = 1 + 2Sb. Thus in both cases the self-consistent condi- 
tion (4.1) is almost satisfied. Keeping the result for bll and determining b, through 
the condition (4.1) leads to bl = 1 + Sb(0.631) for the isotropic fixed point, or 

v, = 0.81 1 (4.7) 

v, = 0.999 (4.8) 
which is almost the exact value. 

The transverse exponents v, are thus significantly improved by enforcing the 
self-consistent condition (4.1). 

In conclusion, we see that our RSRG transformation implemented by the TEL 

hypothesis leads to a qualitatively satisfactory description of the directed geometrical 
transition. Both the location of the critical point as well as the values of the correlation 
length exponents can be found in arbitrary dimensions. 

while for the anisotropic fixed point, one finds b, = 1 + Sb(0.631) and 
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Appendix 1 

One considers here the case of d-dimensional directed self-avoiding walk. The longi- 
tudinal direction is given by one of the main diagonals of the hypercube defining the 
lattice. There are ( d  - 1) transverse directions in a plane perpendicular to the main 
diagonal. 

The RSRG transformation for this general case is a direct extension of what has 
been done for two dimensions. Let pj be the fugacity associated to a step in the 
direction j .  The generalisation of the recursion relation (2.6) is then for b + 1 + Sb: 

PiPj In Pi 
i + j = 1  l - p i  

(Al . l )  

For the isotropic case, pj  = p V j ,  the critical fixed point is thus 

p *  = l / d  (A1.2) 



1878 J Kamphorst Leal da Silva and M Droz 

which is the exact value. Linearising the transformation around the isotropic fixed 
point leads to 

(A1.3) 

The two effective lengths are introduced along the same lines as for two dimensions. 
Each path is projected on the longitudinal direction and on the perpendicular plane. 

We restrict ourselves here to the symmetric case p j  = pVj. Using the generalisation 
of the first procedure described in § 2, one finds 

where 4 = 1 -p. Using (2.22) and the fixed point value (A1.2), one obtains 

VI1 = 1 Vd 

which is the exact result. For the perpendicular direction, one has 

Using (2.21) and the fixed point value (A1.2), one finds 

1 1 
U,=--- l n d  d - 1  

(A1.4) 

(A1.5) 

(Al.6) 

(A1.7) 

giving U, = 0.410, 0.388 and 0.371 for d = 3, 4 and 5 respectively. The exact solution 
is vL = 0.5 for all dimensions. 

The correlation length exponents can be also computed by generalising the second 
procedure described in § 2. In this case, one finds at the isotropic fixed point 

In d -- 2d ). Li( p*; 1 + S b )  d(3d - 1) ( (d-1)2  ( d  - 1) 
= 1 + S b  

Li(p*; 1) 
(A1.8) 

Using (2.28) and (A1.3), one finds 

(3d-1)  1 
VI/ =--- (A1.9) 

Thus, U I I  = 1.09,l . l l  and 1.13 for d = 3,4  and 5 respectively. As for the two-dimensional 
case, this prescription does not give the exact answer, but is a good approximation 
for d not too large. 

2(d-1)  I n d '  

For the perpendicular direction, one finds 

L t (  p*; 1 + Sb) 
L:(P*; 1) 

1 - d In d -- 
d - 1  

Using (2.29) and (A1.3), one finds 

(A1.lO) 

1 1 l +  1 1 1 
( A l . l l )  --_- 

U L = ~ ( l - ~ ) + ~  2(d-1)2 d d(d-1) '  
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Thus v, = 0.433, 0.400 and 0.375 for d = 3, 4 and 5 respectively. The values of v, are 
somewhat better than the ones obtained with the first prescription. However, they do 
not agree with the exact result v, = 0.5. One reason for that is the violation of the 
self-consistent condition (4.1) which becomes more severe as the dimensionality of 
the system increases. 

Appendix 2 

One considers here the case of the d-dimensional directed percolation. There are now 
one longitudinal and ( d  - 1) tranverse directions. 

The d-dimensional RSRG transformation is performed along the same lines as for 
the two-dimensional case. One obtains in the limit 6 + 1 + 66 (Kamphorst Leal da 
Silva and Droz 1985) 

(A2.1) 

The number of fixed points proliferates rapidly with the dimension and, for simplicity, 
we shall restrict ourselves here to the symmetric fixed points ( p i  = pVi) .  Those fixed 
points are the solution of 

(A2.2) 

The relevant eigenvalue of the linearised transformation at the critical fixed point is 

( d - l ) p *  (1-2p*+(2q*-p*) ln(p*q*) 
p * q *  - 1 

- 
p * q *  - 1 

Similarly to (3.4), the correlation length exponents vl l  and v, are obtained as 

(A2.3) 

(A2.4) 

The two correlation lengths are computed along the same lines as for the two- 
dimensional case. After some tedious algebra, one finds 

where 

lnp* p*Inp* dp* p * l n p *  +--. g ( p * )  = 2--+ln p*  ---2 - 2 
q** q*2 q*3 1+dp* q* 

(A2.5) 

(A2.6) 

Using (A2.3)-(A2.5) one can compute the exponent vll. In the limit d + 00, one finds 
the following asymptotic behaviour: 

(A2.7) 

This result does not agree with the mean-field prediction v l l=  1, which holds for 
d s d u  = 5 .  

vll = $ -2/ln d + 11/4d + O( l / d 2 ) .  
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For the perpendicular direction, one obtains at the isotropic critical fixed point 

d p*lnp* + 2p*ii:p*)] (A2.8) 
= 1 + S b  -- I : (p * ;  1 + a b )  

&p*; 1 )  [ l+dp*  q* 

from which v i  can be computed, using (A2.3) and (A2.5). In the limit d -00 ,  one 
finds the following asymptotic behaviour: 

vL = 2 -  l / ln  d - l / d  In d +9/4d +0( l / d 2 )  (A2.9) 

which again does not agree with the mean-field prediction v, = 0.5. 
However, for d not too large, the values obtained for the exponents are more 

reasonable. For example, in three dimensions, one finds vII = 1.45 and vi = 0.55, values 
to be compared with the best estimates vlj = 1.27 and vi = 0.735. As far as the percolation 
threshold is concerned, one finds for d + 00: 

p * = d - ' + d - 2 + 2 d - 3 + O ( d - 4 ) .  (A2.10) 

The leading term agrees with the exact value. 
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